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Soliton internal mode bifurcations: Pure power law?
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The bifurcation of internal solitary wave modes from the essential spectrum has been one of the most
exciting recent developments in the study of soliton dynamics. To date, it was believed that the bifurcation of
such modes due to discretization has a strict power law dependence on the lattice discreteness parameter. In
this work we prove that this dependence actually possesses relevant exponentially small terms which distin-
guish between different solutions for the discrete models. The theoretical result is established by using a
discrete version of the Evans function. The predictions presented herein compare very favorably with the
numerical study of the linear eigenvalue problem, and offer explanations of computational effects not possible
on the basis of previous theoretical studies.
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The ubiquity of solitary waves in physical applications@1#
has triggered, over the past few decades, an intense the
ical and experimental effort to study and understand th
nonlinear waves. Even though most of the initial attempts
study such phenomena were in the continuum setup
Hamiltonian nonlinear partial differential equations~see
Refs. @1,2# for reviews of relevant problems and results!, it
was more recently realized that many of the relevant ap
cations were inherently discrete. When considering the m
tion of dislocations in solid state physics@3#, the local dena-
turation of the DNA double strand@4# ~and references
therein!, arrays of Josephson junctions, and optical fibers
information transmission@5–7# ~and references therein!, to
name a few, the relevant problems have to be studied o
lattice.

The study of such excitations on a lattice over the p
two decades revealed a completely different picture than
one that was known for their continuum siblings. The bre
ing of translational invariance~TI! was found to generically
produce two static steady states~one stable and one unstabl!
due to the corresponding bifurcation of the translatio
modes in the spectral plane@8–11#. In addition, edge mode
were found to bifurcate from the phonon band and give r
to localized eigenmodes of the soliton@12–14#. The reso-
nance of the harmonics of relevant eigenmodes~a finite-
dimensional subspace! with the infinite-dimensional space o
extended eigenmodes was found to give rise to nonlin
damping @15,16# that would brake and eventually trap th
solitons.

In this paper, we will revisit one aspect of this pictur
namely, the bifurcation of internal solitary wave modes fro
the phonon band. This aspect is particularly important si
not only are these modes relevant to the radiation problem
identifying the resonance picture@15#, but also because the
may affect~modulate! the nature of the transmitted informa
tion. As identified in early numerical experiments@16,17#,
1063-651X/2001/63~3!/036602~5!/$15.00 63 0366
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and proved in Ref.@15#, such modes may create genuine
periodic asymptotic states in which one such mode has
sistent oscillations of nonzero amplitude. One may think
such periodic solutions as breathers~since they are time pe
riodic and exponentially localized in space! mounted on a
kink background. Furthermore, preliminary results of rec
work by one of the present authors@18# indicated that the
presence of such internal modes may be directly relate
the absence of integrability in such systems. Hence it is v
to have a physical and mathematical handle on the beha
of such objects.

These modes were observed for the first time in the d
crete sine Gordon~SG! equation

un,tt5un111un2122un2
1

d2
sinun ~1!

@whereu(n,t) is the field, subscriptn denotes the lattice site
and subscriptt the time derivative, andd51/Dx is the dis-
creteness parameter, i.e., the inverse lattice spacing# by
Braun, Kivshar and Peyard@12#. Subsequent theoretica
work by Kivsharet al. @19# predicted that these modes wou
bifurcate by an amountO(1/d4) from the edge of the phonon
band which lies at 1/d ~the dispersion relation readsv25
2(1/d21222 cosk), hence permitting extended waves wi
frequencies in the interval6 i @1/d,A411/d2#). Their rea-
soning was based on the Taylor expansion

un111un2122un

Dx2
5(

j 51

`
2Dx2 j 22

2 j !

d2 ju

dx2 j
. ~2!

In particular, discreteness was treated as a singular fo
~leading! order derivative perturbation to the continuu
©2001 The American Physical Society02-1
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problem. Using solvability conditions within perturbatio
theory, they were able to establish a bifurcation from
band edge of the form

v25vedge
2 ~12e2b2!, ~3!

where e5Dx2/12 is the perturbation parameter andb the
self-consistently determined~through the solvability condi-
tions! detuning parameter@13,19#. Using the same strateg
~discreteness as a leading order perturbation in the Ta
series! Kevrekidis and Jones proved in Ref.@13# that the
continuum Evans technique gives the same prediction for
bifurcation as Eq.~3!. Hence the two methods are consiste
as they should be since they essentially constitute two a
native approaches to a Melnikov calculation@20,21#. Hence,
bothRefs.@19# and@13# concluded the subject at the level
the bifurcation being a power law. No mention of expone
tially small terms and their effect appeared in either of th
works.

However, in both papers one important aspect of the pr
lem was missed: that there exist two distinct kink solutio
to Eq. ~1!, and the continuum approximation~2! to discrete-
ness does not note this. If one constructs theexactdiscrete
static solitons, there are two steady states. When conside
the SG equation, the stable steady state corresponds
~low-energy! kink centered between two consecutive latti
sites, whereas the unstable state corresponds to a~high-
energy! kink centered on a lattice site. The exponentia
small energy barrier between the two is the celebra
Peierls-Nabarro barrier mirroring the exponential splitting
the heteroclinic orbits. If one performs a numerical line
stability analysis, one finds that for the stable kink a mo
bifurcates from the band edge, whereas for the unstable
no mode appears to bifurcate from the band edge@see, for
instance, Fig. 5~b! of Ref. @8#, and the relevant explanation#.
If the behavior was only a power law and could be describ
solely by a quartic perturbation, then it should be true t
the bifurcation should occurboth for the stable and unstabl
modes, since such a continuum-like TI perturbation has
means of discriminating between these two modes. He
the fact that the behavior of the modes depends on the w
under consideration signifies that there must be terms
perturbation expansion at a level which discriminates
tween the two solutions, and consequently it must be an
ponentially small effect.

Here we wish to establish that the perturbation expans
for the edge modes detaching from the essential spec
have exponentially small terms which~a! distinguish be-
tween the two different solutions, and~b! can become rel-
evant for sufficiently coarse systems (d5O(1)). As acase
example, we consider the discrete nonlinear Schro¨dinger
~DNLS! equation

iun,t52d2~un111un2122un!22uunu2un , ~4!

which is a rather general model of interest in many of
inherently discrete applications mentioned above. Anot
reason for this choice is that DNLS equation is a gene
envelope equation for Hamiltonian nonlinear lattice syste
Unlike Ref. @14#, in which we found the relevant exponen
03660
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tially small term by using the asymptotics beyond all orde
~ABAO! technique in the spirit of Hakim and Mallick@22#,
here we will find this term by using the Evans function. Th
more general methodology will have the advantage tha
will simultaneously pick out the leading order algebraic a
exponentially small term ford sufficiently large. An impor-
tant difference between this work and Ref.@14# is that, for
the translational modes, the presence of the continuous s
metry necessitated that to all orders in expansion~2!, the
frequency of the modes does not bifurcate away from 0
it is only BAO that the bifurcation occurs. However, th
modes studied herein are not associated with some symm
and, thus, generically the bifurcation will be due to bo
algebraic and exponential factors, as mentioned above.

In order to perform the perturbation calculation, one m
have a well-understood system for larged. In previous works
@13,19# the system considered was the continuum NLS eq
tion

iut1uxx12uuu2u1
1

12d2
uxxxx50.

The prediction presented therein was that for larged the
bifurcating edge mode satisfies the relationship

l5 i S 12
1

81d4D .

As previously remarked, however, this prediction does
distinguish between the two different solutions to the DN
equation; hence it must be missing some possibly impor
correction terms.

Instead of using the continuum NLS equation as the
proximating system to the DNLS equation, we will use t
Ablowitz-Ladik @23,24# discretization of the NLS~AL-
DNLS! equation, which is given by

iun,t52d2~un111un2122un!2uunu2~un211un11!.
~5!

The advantage here is that since the AL-DNLS equation
also a discrete system, a perturbation calculation which u
it should naturally pick up all discreteness effects. The A
DNLS equation is completely integrable; as one con
quence, it has an exact solution which is given by

Un~j!5sinh~a!sech~ ãn1j!,

where

cosh~ ã !511
1

2d2
, sinh~a!5d sinh~ ã !.

Note that ford large,ã'1/d and sinh(a)'1. It was noted by
Herbst and Ablowitz@11# that for d sufficiently large the
DNLS equation can be thought of as a perturbation of
AL-DNLS equation. Using this observation, they were ab
to perform a Melnikov calculation to measure the splitting
the homoclinic orbit. This calculation confirmed the we
2-2
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SOLITON INTERNAL MODE BIFURCATIONS: PURE . . . PHYSICAL REVIEW E 63 036602
known result that for the DNLS equation there exist tw
solitonlike solutions, both of which are a perturbation ofUn
@25#. One solution is a perturbation ofUn(0), and theother
is a perturbation ofUn(Dx/2). Using the Melnikov calcula-
tion of Ref. @11#, it can be shown via the construction of th
Evans function@26# ~as an alternative to the ABAO metho
of Ref. @14#! that whenj50 there are no positive eigenva
ues of the linear operator nearl50, while if j5Dx/2 there
is exactly one exponentially small unstable eigenvalue.

The Evans functionE(l) is an analytic function of the
eigenvalue parameterl, whose zeros correspond to eige
values of the linearized operator@27#. It was recently shown
that for continuum problems it is the tool of choice for l
cating edge modes@28–30#. Furthermore, it is now known
that the Evans function is also a useful tool to find eigenv
ues for discrete problems@8,26#.

For the DNLS equation, the essential spectrum co
sponds to a branch cut for the Evans function, with
branch points being at the edges, i.e., atl56 i and l5
6 i (114d2). In the problem at hand one would like to writ
a Taylor expansion for the Evans function near the bra
point, and then find the zeros of the resulting series. As
ready mentioned, these zeros would then be the eigenva
of the linearized problem. For the rest of this discussion
will focus only on the situation nearl5 i .

In order to perform a Taylor expansion around a bran
point, one must define the Evans function on an appropr
Riemann surface. For the DNLS equation, this surface n
l5 i is defined by

g25
11 il

d2 S 11
1

4d2D ~6!

@26#, and is found in the following way. After linearizing Eq
~5! about the wave, one has an eigenvalue problem wh
can be written as the first-order system

Yn115A~l,n!Yn ,

whereYnPC4. Since the underlying wave decays expone
tially fast asunu→`, one has

lim
unu→`

A~l,n!5A0~l!.

Denote the eigenvalues ofA0(l) by m j
6(l) for j 51 and 2,

where for Rel.0 one has that Rem j
2(l),0 and

Rem j
1(l).0. A branch point of the Evans function is de

termined by the conditions thatm j
2(l)5m j

1(l) for somej,
and that this eigenvalue forA0(l) has a geometric multiplic-
ity 1 and an algebraic multiplicity 2. In practice it turns o
that the eigenvaluem j

6(l) also has a branch point when th
Evans function does, and the Riemann surface on which
eigenvalues are analytic is also that on which the Ev
function is analytic. Once the zeros of the Evans funct
have been located on the Riemann surface, we take t
zeros which lie on the correct sheet, i.e., Reg.0, and invert
Eq. ~6! via
03660
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1

d2
22A11g2D ~7!

to find the eigenvalues for the system.
Since the AL-DNLS equation is completely integrabl

one can explicitly compute the Evans function associa
with it. For example, this was done in Ref.@28# for the fo-
cusing NLS equation. In particular, one finds that on t
Riemann surface nearg50(l5 i ) the Evans function satis
fies

E~0!50, ]gE~0!54d ~8!

@26#. Furthermore, one finds that upon using the perturba
techniques established in Refs.@31,28,29# that, with e
51/d2,

]eE~0!52 (
n52`

1`

PnLePn .

In the above equationPn is the squared eigenfunction atl
5 i for the linearized operator associated with the AL-DNL
equation, andLe represents theO(e) correction of that op-
erator when perturbing to the DNLS equation. An evaluat
of the above sum yields

]eE~0!52F4

9
1C~d!e2p2/ãcosS 2pj

ã
D G , ~9!

where, to lowest order,

C~d!5
256p

45 S p

ã
D 7

'53979.2d7.

In Eq. ~9!, j can take the values 0~corresponding to the
stable wave! and 1/(2d) ~corresponding to the unstabl
wave!. It is important to note here that~a! the exponentially
small term distinguishes between the two solutions, and~b!
although the exponentially small term is numerically neg
gible for d sufficiently large, it begins to have anO(1) effect
for d<2.0.

As a consequence of Eqs.~8! and~9!, the Evans function
has an expansion on the Riemann surface which is given

E~g,d!54dFg2
1

9d3 H 11
9

4
C~d!e2p2/ãcosS 2pj

ã
D J G .

~10!

For d sufficiently large the zero of the Evans function on t
Riemann surface is positive; hence, by using the invers
relationship~7! one obtains that the eigenvalue satisfies

l~j!5 i F12
1

81d4 H 11
9

2
C~d!e2p2/ãcosS 2pj

ã
D J G .

~11!

It is now seen that ford sufficiently large the locations of the
edge modes associated withj50 andj51/(2d) differ by an
2-3
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FIG. 1. For the top and bottom panel~for the
stable and unstable wave, respectively!, the
dashed line shows the theory of Ref.@19#, the
solid line the theory of this paper, and the sta
the results of numerical experiments on a 400-s
lattice with PBC’s. In the bottom panel, circle
indicate results on a 200-site lattice and plus
results on a 300-site lattice.
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exponentially small amount, and that the edge mode ass
ated with j50 drops faster than that associated withj
51/(2d).

Hence one has a clear explanation for the disparity
tween theory and numerical experiment in Fig. 1 of R
@19#, as well as for the discrimination between the two stea
states with respect to their breathing eigenmodes. Each a
braic term in the perturbation expansion for the edge mo
i.e., ]e

kE(0) for k>2, possesses an exponentially small c
rection which distinguishes between the two solutions; f
thermore, each of these small correction terms becomes
nificant ford5O(1). Hence, ford5O(1) the coefficients in
the two expansions are no longer close to each other, w
implies that one can get the observed behavior.

This analysis is illustrated in the two panels of Fig. 1. T
03660
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top panel shows the bifurcation for the stable wave as p
dicted by the two theories~the single power law of Ref.@19#,
given by dashed line, as well as the power law with exp
nential corrections, shown by the solid line! compared with
the numerical experiment~stars!. The significantly better
agreement of the theory that includes the exponential cor
tions is clearly illustrated. Even more dramatic in the co
trast of the predictions of the two theories is the lower pan
indicating the bifurcation of the unstable wave. Here the d
ference in scale in the two bifurcations~of the top and bot-
tom panel for the stable and unstable wave! should be high-
lighted ~the maximal bifurcation for the stable wave
'0.155, whereas for the unstable it is'0.0019). It should
be noted that the theory of Ref.@19# cannotdistinguish be-
tween bifurcation for the two waves, and is clearly unable
2-4
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capture such effects~as is any power law TI type of scheme!.
Additionally, the exponentially small correction captures t
effect of the mode returning to the band edge at finiteh
51/d ~due to the competition between the power law and
exponential factors!, another phenomenon which is not vi
ible to pure power law perturbations. Note that this is t
first time, to our knowledge, that the contribution of exp
nentially small terms in this bifurcation has been apprecia
~especially for coarse lattices that are used for the appl
tions involving discrete systems!. Furthermore, we believe i
is the first time that these effects have been quantified
leading exponential order, giving good agreement even
strongly discrete systems. This is contrary to the consis
but insufficient power law theoretical descriptions of Re
@19# and @13#. The discrepancies between the numerical
periment and our theory are expected to be due to the hi
order contributions as well as partly~especially in the un-
stable wave case! due to finite size effects. The finite size o
the lattice, as also observed in Ref.@8#, causes correction
~close to the continuum limit! of O(1024) in the eigenval-
ues. This is~almost! negligible for the stable wave, but fo
the unstable wave it is clearly observable and is shown in
lower panel of Fig. 1, where the circles indicate numeri
calculations with periodic boundary conditions~PBC’s! on a
200-site lattice, the pluses the same on a 300-site lattice,
the stars the same on a 400-site lattice. These additional
s,

-

t.

D

R.

D

sl
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tors being considered, we can conclude that even tho
power law effects are important when studying bifurcatio
close to the band edge~contrary to what is true close to th
origin @14#!, it is crucial to properly incorporate exponen
tially small corrections to obtain a good agreement with a
an understanding of the numerical observations.

It should be noted that similar results can be found for
sine Gordon equation and thef4 equation~for their corre-
sponding integrable discretizations!. Alternatively, exponen-
tially small phenomena such as the ones discussed here
be captured by the ABAO method@22,32,33,14#. The results
are similar to the ones given here, and will be presen
elsewhere.

For very strong discreteness, i.e., forh@1, neither the
ABAO nor Evans methods can capture the actual behavio
the ~stable! mode very well. While this is to be expecte
extending the theoretical methodology to the regime of v
strong discreteness (d!1) remains an outstanding math
ematical challenge that will be left for future studies.
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