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Soliton internal mode bifurcations: Pure power law?
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The bifurcation of internal solitary wave modes from the essential spectrum has been one of the most
exciting recent developments in the study of soliton dynamics. To date, it was believed that the bifurcation of
such modes due to discretization has a strict power law dependence on the lattice discreteness parameter. In
this work we prove that this dependence actually possesses relevant exponentially small terms which distin-
guish between different solutions for the discrete models. The theoretical result is established by using a
discrete version of the Evans function. The predictions presented herein compare very favorably with the
numerical study of the linear eigenvalue problem, and offer explanations of computational effects not possible
on the basis of previous theoretical studies.
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The ubiquity of solitary waves in physical applicatidd3  and proved in Ref[15], such modes may create genuinely
has triggered, over the past few decades, an intense theorgeriodic asymptotic states in which one such mode has per-
ical and experimental effort to study and understand thessistent oscillations of nonzero amplitude. One may think of
nonlinear waves. Even though most of the initial attempts tésuch periodic solutions as breatheéséce they are time pe-
study such phenomena were in the continuum setup ofiodic and exponentially localized in spacmounted on a
Hamiltonian nonlinear partial differential equatioisee  Kink background. Furthermore, preliminary results of recent
Refs.[1,2] for reviews of relevant problems and resylis ~ WOrk by one of the present authofs8] indicated that the
was more recently realized that many of the relevant appliPresence of such internal modes may be directly related to
cations were inherently discrete. When considering the mothe absence of integrability in such systems. Hence it is vital
tion of dislocations in solid state physif3], the local dena- to have a physmal and mathematical handle on the behavior
turation of the DNA double strand4] (and references ©f such objects. S ,
therein, arrays of Josephson junctions, and optical fibers for 1nese modes were observed for the first time in the dis-
information transmissiofi5—7] (and references therdinto  c'ete sine GordoKSG) equation
name a few, the relevant problems have to be studied on a
lattice. 1

The study of such excitations on a lattice over the past Up tt= Uns 1+ Up—1—2Up— —sinuy, 1)
two decades revealed a completely different picture than the d
one that was known for their continuum siblings. The break-
ing of translational invarianceTl) was found to generically [whereu(n,t) is the field, subscriph denotes the lattice site
produce two static steady statese stable and one unstable 514 subscript the time derivative, and=1/Ax is the dis-
due to _the corresponding bifurcation 'o'f the translational,eteness parameter, i.e., the inverse lattice sphdiyg
modes in the spectral plaii8-11]. In addition, edge modes grayn, Kivshar and Peyari12]. Subsequent theoretical
were found to bifurcate from the phonon band and give risgyqrk by Kivsharet al.[19] predicted that these modes would

to localized eigenmod_es of the solitcﬁm2—14]. The €S0~ pifurcate by an amour®(1/d) from the edge of the phonon
nance of the harmonics of relevant eigenmodesfinite- band which lies at o (the dispersion relation reads?=

dimensional subspagwith the infinite-dimensional space of _ (1/d2+ 2 — 2 cosk), hence permitting extended waves with

extended eigenmodes was found to give rise to nonlineay ies in the intervakil 1/d. v+ 1/d21). Thei i
damping[15,16 that would brake and eventually trap the srgr?ilﬁlznv(cs; l;gseg 0'2 frr]\é Tallg/lor,expansiogl). eir rea

solitons.
In this paper, we will revisit one aspect of this picture,
namely, the bifurcation of internal solitary wave modes from Unr1tUno1—2U,  « 2Ax272d?y
the phonon band. This aspect is particularly important since Ax? :j:1 T @ @

not only are these modes relevant to the radiation problem in

identifying the resonance pictufé&5], but also because they

may affect(modulate the nature of the transmitted informa- In particular, discreteness was treated as a singular fourth
tion. As identified in early numerical experiments6,17, (leading order derivative perturbation to the continuum
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problem. Using solvability conditions within perturbation tially small term by using the asymptotics beyond all orders
theory, they were able to establish a bifurcation from the(/ABAQ) technique in the spirit of Hakim and Mallidk2],

band edge of the form here we will find this term by using the Evans function. This
. - more general methodology will have the advantage that it
W= wegqd 1 - €°b%), (3 will simultaneously pick out the leading order algebraic and

) i i exponentially small term fod sufficiently large. An impor-
where e=Ax/12 is the perturbation parameter ahdthe  (5nt difference between this work and REE4] is that, for
self-consistently determinedhrough the solvability condi- e translational modes, the presence of the continuous sym-
tions) detuning paramete13,19. Using the same strategy meiry necessitated that to all orders in expansin the

(discreteness as a leading order perturbation in the Taylgfeguency of the modes does not bifurcate away from 0 and
serieg Kevrekidis and Jones proved in Refl3] that the ji js only BAO that the bifurcation occurs. However, the
continuum Evans technique gives the same prediction for thg,,des studied herein are not associated with some symmetry
bifurcation as Eq(3). Hence the two methods are consstent,and, thus, generically the bifurcation will be due to both
as they should be since they essentially constitute two a“e%ilgebraic and exponential factors, as mentioned above.
hative approaches to a Melnikov calculati@®,21]. Hence, In order to perform the perturbation calculation, one must
both Refs.[19] and[13] concluded the subject at the level of pave a well-understood system for laigjdn previous works

the bifurcation being a power law. No mention of exponen-13 19 the system considered was the continuum NLS equa-
tially small terms and their effect appeared in either of thesgjg,

works.
However, in both papers one important aspect of the prob- 1
lem was missed: that there exist two distinct kink solutions iU+ Uyt 2|ul?u+ 1—2dzuxxxxz 0.

to Eq. (1), and the continuum approximati@8) to discrete-
ness does not note this. If one constructs eRactdiscrete
static solitons, there are two steady states. When consideri
the SG equation, the stable steady state corresponds to
(low-energy kink centered between two consecutive lattice ( 1 )
A=i .

The prediction presented therein was that for lactgéhe
urcating edge mode satisfies the relationship

sites, whereas the unstable state corresponds tbigh-
energy kink centered on a lattice site. The exponentially
small energy barrier between the two is the celebrated
Peierls-Nabarro barrier mirroring the exponential splitting ofAs previously remarked, however, this prediction does not
the heteroclinic orbits. If one performs a numerical lineardistinguish between the two different solutions to the DNLS
stability analysis, one finds that for the stable kink a modeequation; hence it must be missing some possibly important
bifurcates from the band edge, whereas for the unstable kingorrection terms.

no mode appears to bifurcate from the band efdgpe, for Instead of using the continuum NLS equation as the ap-
instance, Fig. &) of Ref.[8], and the relevant explanatipn Proximating system to the DNLS equation, we will use the
If the behavior was only a power law and could be described\blowitz-Ladik [23,24 discretization of the NLS(AL-
solely by a quartic perturbation, then it should be true thaDNLS) equation, which is given by

the bifurcation should occuoth for the stable and unstable
modes, since such a continuum-like Tl perturbation has no
means of discriminating between these two modes. Hence

the fact that the behavior of the modes depends on the wavgne advantage here is that since the AL-DNLS equation is
under consideration signifies that there must be terms in gi5q 5 discrete system, a perturbation calculation which uses
perturbation expansion at a level which discriminates bej; should naturally pick up all discreteness effects. The AL-

tween the two solutions, and consequently it must be an expy s equation is completely integrable; as one conse-

ponentially small effect. , . quence, it has an exact solution which is given by
Here we wish to establish that the perturbation expansion

for the edge modes detaching from the essential spectrum U, (&) =sinh @)sectfan+ &),
have exponentially small terms whidl@ distinguish be-

tween the two different solutions, anid) can become rel- where

evant for sufficiently coarse systemd=O(1)). As acase

1_ -
81d*

H _ 2 2
|un,t_ —d (un+l+unfl_2un)_|un| (unfl+un+1)-

example, we consider the discrete nonlinear Sdimger - 1 . -
(DNLS) equation coshia)=1+ el sinhla)=d sinh(a).
iun,t: _dz(un+l+unfl_zun)_zlun|2unv (4)

Note that ford large,a~ 1/d and sinh&)~1. It was noted by
which is a rather general model of interest in many of theHerbst and Ablowitz[11] that for d sufficiently large the
inherently discrete applications mentioned above. AnotheDNLS equation can be thought of as a perturbation of the
reason for this choice is that DNLS equation is a genericAL-DNLS equation. Using this observation, they were able
envelope equation for Hamiltonian nonlinear lattice systemsto perform a Melnikov calculation to measure the splitting of
Unlike Ref.[14], in which we found the relevant exponen- the homoclinic orbit. This calculation confirmed the well-
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known result that for the DNLS equation there exist two

solitonlike solutions, both of which are a perturbationlf A=id?

[25]. One solution is a perturbation &f,,(0), and theother

is a perturbation ofJ,(Ax/2). Using the Melnikov calcula-

tion of Ref.[11], it can be shown via the construction of the

Evans functior[26] (as an alternative to the ABAO method

of Ref.[14]) that whené=0 there are no positive eigenval-

ues of the linear operator nerr=0, while if £&=Ax/2 there

is exactly one exponentially small unstable eigenvalue.
The Evans functiorE(\) is an analytic function of the

eigenvalue parameter, whose zeros correspond to eigen-

values of the linearized operat®7]. It was recently shown E(0)=0, 4.E(0)=4d ®)

that for continuum problems it is the tool of choice for lo- 7

cating edge modef28-3Q. Furthermore, it is now known [26]. Furthermore, one finds that upon using the perturbation

that the Evans function is also a useful tool to find eigenval-techniques established in Reff31,28,29 that, with €
ues for discrete probleni8,26]. =1/d?,

For the DNLS equation, the essential spectrum corre-
sponds to a branch cut for the Evans function, with the b
branch points being at the edges, i.e.,\at =i and A= dE(0)=— 2 PaL P
+i(1+4d?). In the problem at hand one would like to write S
a Taylor expansion for the Evans function near the branchy the above equatio®, is the squared eigenfunction &t
point, and then find the zeros of the resulting series. As al—; for the linearized operator associated with the AL-DNLS
ready mentioned, these zeros would then be the eigenvalugﬁuation' and_, represents th©(e) correction of that op-

of the linearized problem. For the rest of this discussion W&, ator when perturbing to the DNLS equation. An evaluation
will focus only on the situation neax=i. of the above sum yields

In order to perform a Taylor expansion around a branch

)

1
2+¥—2\/1+’y

to find the eigenvalues for the system.

Since the AL-DNLS equation is completely integrable,
one can explicitly compute the Evans function associated
with it. For example, this was done in R¢28] for the fo-
cusing NLS equation. In particular, one finds that on the
Riemann surface near=0(\=i) the Evans function satis-
fies

point, one must define the Evans function on an appropriate 4 . 2mé
Riemann surface. For the DNLS equation, this surface near d.E(0)=— §+C(d)e‘” lecog —1 |, 9
A=i is defined by «
. where, to lowest order,
) 1+iN 1 ®
Y d? 442 256w [ T ! .
C(d)=——| =| =~53979.2".
45 \ 5

[26], and is found in the following way. After linearizing Eqg.
(5) about the wave, one has an eigenvalue problem whicih Eq. (9), ¢ can take the values Qcorresponding to the

can be written as the first-order system stable wavg and 1/(21) (corresponding to the unstable
wave. It is important to note here th&a) the exponentially
Y1 =ANN)Y,, small term distinguishes between the two solutions, @d

. . although the exponentially small term is numerically negli-
whereY e C*. Since the underlying wave decays exponen-gible for d sufficiently large, it begins to have &(1) effect

tially fast as|n|—c, one has for d=2.0.
. As a consequence of Eq®) and(9), the Evans function
lim A(N,n)=Ag(N). has an expansion on the Riemann surface which is given by
In‘ﬂoo
. 1 9 -l 2’77'6
Denote the eigenvalues 8f(\) by u; (\) for j=1 and 2, E(y,d)=4d| y— of 1+ C(d)e cog — | |-
o

where for Re.>0 one has that Re; (\)<O and (10)
Re,ur()\)>0. A branch point of the Evans function is de-

termined by the conditions that; (\) =,uj+()\) for somej, For d sufficiently large the zero of the Evans function on the
and that this eigenvalue f@x,(\) has a geometric multiplic- Riemann surface is positive; hence, by using the inversion
ity 1 and an algebraic multiplicity 2. In practice it turns out relationship(7) one obtains that the eigenvalue satisfies

that the eigenvaluaf()\) also has a branch point when the

Evans function does, and the Riemann surface on which the . 1 2 2m¢
eigenvalues are analytic is also that on which the Evans A(g):'{l_@[ﬁic(d)e cos( T)]
function is analytic. Once the zeros of the Evans function (12)
have been located on the Riemann surface, we take those

zeros which lie on the correct sheet, i.e.,JRe0, and invert It is now seen that fod sufficiently large the locations of the
Eq. (6) via edge modes associated with- 0 andé=1/(2d) differ by an
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exponentially small amount, and that the edge mode assodiep panel shows the bifurcation for the stable wave as pre-
ated with é&=0 drops faster than that associated wgh dicted by the two theorie@he single power law of Ref19],
=1/(2d). given by dashed line, as well as the power law with expo-
Hence one has a clear explanation for the disparity benential corrections, shown by the solid ljneompared with
tween theory and numerical experiment in Fig. 1 of Ref.the numerical experimentstars. The significantly better
[19], as well as for the discrimination between the two steadyagreement of the theory that includes the exponential correc-
states with respect to their breathing eigenmodes. Each algéiens is clearly illustrated. Even more dramatic in the con-
braic term in the perturbation expansion for the edge modeyast of the predictions of the two theories is the lower panel,
ie., a‘;E(O) for k=2, possesses an exponentially small cor-indicating the bifurcation of the unstable wave. Here the dif-
rection which distinguishes between the two solutions; furference in scale in the two bifurcatiofisf the top and bot-
thermore, each of these small correction terms becomes sitpm panel for the stable and unstable waskould be high-
nificant ford=0O(1). Hence, ford=0(1) the coefficients in lighted (the maximal bifurcation for the stable wave is
the two expansions are no longer close to each other, whick0.155, whereas for the unstable it4s0.0019). It should
implies that one can get the observed behavior. be noted that the theory of Rdfl9] cannotdistinguish be-
This analysis is illustrated in the two panels of Fig. 1. Thetween bifurcation for the two waves, and is clearly unable to
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capture such effecias is any power law Tl type of scheijne tors being considered, we can conclude that even though
Additionally, the exponentially small correction captures thepower law effects are important when studying bifurcations
effect of the mode returning to the band edge at fiite close to the band edgeontrary to what is true close to the

= 1/d (due to the competition between the power law and theorigin [14]), it is crucial to properly incorporate exponen-
exponential factons another phenomenon which is not vis- tially small corrections to obtain a good agreement with and
ible to pure power law perturbations. Note that this is thean understanding of the numerical observations.

first time, to our knowledge, that the contribution of expo- |t should be noted that similar results can be found for the
nentially small terms in this bifurcation has been appreciatedjne Gordon equation and ths* equation(for their corre-
(especially for coarse lattices that are used for the applicasponding integrable discretizationélternatively, exponen-
tions involving discrete systemsFurthermore, we believe it a1 small phenomena such as the ones discussed here can
is the first time that these effects have been quantified Qe captured by the ABAO methd@2,32,33,1% The results

leading exponential order, giv_ing good agreement even fo re similar to the ones given here, and will be presented
strongly discrete systems. This is contrary to the consiste Isewhere '

but insufficient power law theoretical descriptions of Refs.

. : . For very strong discreteness, i.e., foe1, neither the
[19]. and[13]. The discrepancies between the numencallex—ABAo nor Evans methods can capture the actual behavior of
periment and our theory are expected to be due to the high

order contributions as well as part(gspecially in the un- the (stablg mode very well. While this is to be expected,
/el as p P y In the extending the theoretical methodology to the regime of very
stable wave cagalue to finite size effects. The finite size of : . .
. . . strong discretenessd€1) remains an outstanding math-
the lattice, as also observed in RE8], causes corrections

(close to the continuum limitof O(10~%) in the eigenval- ematical challenge that will be left for future studies.
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